a2 United States Patent

Duller et al.

US009104426B2

10) Patent No.: US 9,104,426 B2
(45) Date of Patent: Aug. 11, 2015

(54)

(735)

(73)

")

@

(22)

(65)

(63)

(30)

PROCESSOR ARCHITECTURE FOR
PROCESSING VARIABLE LENGTH
INSTRUCTION WORDS

Inventors: Andrew Duller, Bristol (GB); Gajinder
Singh Panesar, Bristol (GB); Peter
Claydon, Bath (GB); William Robbins,
Bristol (GB); Andrew Kuligowski, Bath
(GB); Olfat Younis, Bath (GB)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
Appl. No.: 11/981,973
Filed: Nov. 1, 2007
Prior Publication Data

US 2008/0065859 Al Mar. 13, 2008

Related U.S. Application Data

Continuation of application No. 11/293,845, filed on
Dec. 2, 2005, now abandoned.

Foreign Application Priority Data

Dec.3,2004 (GB) .ocovviiiiciiiiciiee 0426606.0

(1)

(52)

(58)

Int. CI.

GOGF 7/38 (2006.01)

GOGF 9/38 (2006.01)

GOGF 9/30 (2006.01)

U.S. CL

CPC GOG6F 9/3885 (2013.01); GO6F 9/30149
(2013.01); GO6F 9/3853 (2013.01); GOGF

9/3891 (2013.01)
Field of Classification Search

712/17, 18, 200, 205, 206, 209, 213, 215,
712/216,237,700/2; 711/104
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,692,139 A 11/1997 Slavenburg et al.
5,826,054 A * 10/1998 Jacobsetal.cc......... 712/213

(Continued)

FOREIGN PATENT DOCUMENTS

Jp 2001-034471 A 2/2001
Jp 2004-525439 A 8/2004
(Continued)
OTHER PUBLICATIONS

MIPS, MIPS32 Architecture for Programmers, 2001, MIPS Tech-
nologies, vol. 2, pp. 1-253.*

(Continued)

Primary Examiner — Titus Wong
(74) Attorney, Agent, or Firm — Vecchia Patent Agent, LL.C

(57) ABSTRACT

A LIW processor comprises multiple execution units. The
multiple execution units of the processor are divided into
groups, and an input instruction word can contain instructions
for one execution unit in each of the groups. The processor is
optimized for use in signal processing operations, in that the
multiple execution units of the processor are divided into
groups which do not place significant restrictions on the desir-
able uses of the processor, because it has been determined
that, in signal processing applications, it is not usually nec-
essary for certain execution units to operate simultaneously.
These execution units can therefore be grouped together, in
such a way that only one of them can operate at a particular
time, without significantly impacting on the operation of the
device. An array is formed from multiple interconnected pro-
cessors of this type.

CPC i GO6F 9/3015; GOG6F 9/3816
USPC 712/204, 226, 234, 235, 24, 245, 12, 18 Claims, 5 Drawing Sheets
29
re
o
F—

Instruction Data | 4

Memory Memory

(64x64bit) (64x32bit)

g e —
Instruction p¢* Registers | .,
Decoder (15 x 76 bit)

o ALU Comms MAU /
Unit ALU 9L
<
%./ ;\10 . 7]L “) P / T4
36j 2% f
ao
LIW#1 Liw#2 Liw#3

US 9,104,426 B2

Page 2
(56) References Cited 2002/0069345 Al* 6/2002 Mohamed etal. 712/215
2002/0198606 Al 12/2002 Satou
U.S. PATENT DOCUMENTS 2003/0154358 Al 8/2003 Seong
5,848,283 A 12/1998 O’Connor FOREIGN PATENT DOCUMENTS
6,023,757 A * 2/2000 Nishimoto etal. 712/209
6,044,451 A 3/2000 Slavenburg et al. P 2006-500673 A 1/2006
6,240,510 Bl 5/2001 Yehetal. wo WO 02/50624 A2 6/2002
" . WO WO 2004/029796 A2 4/2004
6,317,820 Bl 11/2001 Shiell etal.cccevenne. 712/32
. WO WO 2004/034251 A 4/2004
6,499,096 B1* 12/2002 Suzuki .. 712/24 OTHER PUBILICATIONS
6,499,097 B2* 12/2002 Tremblay et al. 712/204
6,615,339 Bl : 9/2003 Ttoetal. .o 712724 Pechanek et al. ManArray Processor Interconnection Network: An
6,631,439 B2* 1072003 Saulsbury et al. 7I104 - 1oiroduction, Buro-Par'99, INCS 1685, pp. 761-765, 1999.
6,775,766 B2 8/2004 Revillaetal. ... o 712/245 European Search Report for Apl’n EP 05 257 447.2 dated Apr. 12,
6,892,293 B2* 5/2005 Sachsetal. T12215 9007
7,302,552 B2* 11/2007 Guffensetal.c...... 712/204 Final Office Action mailed Dec. 6, 2011 in connection with Japanese
7,383,422 B2* 6/2008 Kageyamaetal. ... 712/24 Patent Application No. 2005-349339.
7,818,547 B2 10/2010 Aamodt et al.
7,840,953 B2 11/2010 Wuetal. * cited by examiner

U.S. Patent Aug. 11, 2015 Sheet 1 of 5 US 9,104,426 B2

20 20

46 FIG 1 42 46

42

40 40
PRS ~
55 55 50 50
20 20
— an \ AV, >
36
o :éxér I Ts0 50 "~
TN (>X<l\ N
d Y.
36
30{A:@X<\) > <
] / V4 *
32
36
AN ™\
{0 :
'\
32
Pas : ’
55— T g
20 20
- N\ C 50
55— A]
20
<+ K X

U.S. Patent Aug. 11, 2015 Sheet 2 of 5 US 9,104,426 B2

20
e
- >
Instruction Data 9
Memory Memory
(64xB4bit) (64x32bit)
L Jpem—: Ly
Instruction [-¢* Registers | ,
Decoder (15x176bit)
a Y — v S
l" ' YYVY v VW 'y VW'y VYV vyWW
o ALU | | [comms || MAU/ |I] Branch || mac ASU |
! Unit ALU (1! Unit Unit ~N—3
Y \ 4 V('@ vi{ Wi \V E
| vl e
f ; X | y
36 : » 7 i
i | ao i
LIW#1 | Liwg#2 | Liw#3 ;

Figure 2.

U.S. Patent Aug. 11, 2015 Sheet 3 of 5 US 9,104,426 B2

100 —1
o2 104
10b 10% 1o e

N / ‘ / L /!
LIW#1 Lcode2 Lcode3 LIW#2 LIW#3 Long
(or “000” if (optional) | (optional) | Constant
no LIW#1 (optional)
instruction)

Ffj .3
' Byte 0 Byte 1 Extension byte
Field size (bits) 3 1 4 4 4 2 4 2
No ALU #0 op, 000 Lcode2 | Lcode3
with LIW
3 op ALU #0 short, 001~ {0 | operand operand | operand
no LIW 100
Load short, no LIW 101- | 0 | operand operand | operand
110

0/1/2 op ALU #0, 11 0 | opcode Operand | Operand
no LIW {optional) | (optional)
3o0p ALU#0, 001~ |1 operand operand operand ex | S| Lecode2 | Lcode3
possible LIW 110 op
1/2 op ALU #0, 1 1 | opcode operand | operand | 00 | S| Lcode2 | Lcode3
with LIW

Fia. 4

U.S. Patent Aug. 11, 2015 Sheet 4 of 5 US 9,104,426 B2

Execution Unit/ Lcode2 | Additional bytes
Operation
No Comms / MAU operation 000 None
Put 001 1 byte defining register pair to source data and
communications port reference
Get 010 1 byte defining register pair to receive data and
communications port reference
Put and Get 011 1 byte defining register pair to source/receive
data and communications port reference
MAU Memory access (short) 100 1 byte; 4-bit opcode to define Load/Store
operation and 4-bit register address
MAU Memory access (long) 101 2 bytes; 4-bit opcode to define Load/Store
operation, 4-bit or 8-bit offset value, one or two
4-bit register addresses
MAU ALU operation 110 2 bytes; 4-bit opcode, up to three 4-bit register
addresses for operands
Reserved 111 None
Flb Y
Execution Unit / Lcode3 | Additional bytes
Operation
No Branch, MAC or ASU 00 None
operation
Branch 01 1 or 2 bytes carrying additional opcode
definition, register addresses or offsets
ASU operation 10 2 bytes to carry 2-bit opcode, register
addresses and constant values
MAC operation 1 2 or 3 bytes carrying accumulate and format
controls, operand register addresses and
constant values

U.S. Patent Aug. 11, 2015 Sheet 5 of 5 US 9,104,426 B2

Operand value Action
X (where X # 15) Access register X
15 Retrieve Long Constant or
Discard operation result

Fig. 7

Instruction sequence all 0-byte Branch Destination Instruction
instruction
= new line

Word
boundary

Figure 8

US 9,104,426 B2

1
PROCESSOR ARCHITECTURE FOR
PROCESSING VARIABLE LENGTH
INSTRUCTION WORDS

This application is a continuation of and claims priority
from U.S. patent application Ser. No. 11/293,845 filed Dec. 2,
2005 now abandoned which claims priority from British
Patent Application No. 0426606.0 filed on Dec. 3, 2004, the
subject matter of these applications are herein incorporated
by reference in their entirety.

BACKGROUND

This invention relates to a processor architecture, and in
particular to a processor architecture which is particularly
useful in signal processing applications.

Modern high-performance wireless communications sys-
tems require digital processors which can provide billions of
compute operations per second to achieve acceptable perfor-
mance, for example to carry out operations such as filtering,
equalisation and decoding functions. Increasingly these very
high processing demands are satisfied by the use of multiple
execution units (such as arithmetic logic units (ALUs), mul-
tipliers, address generators etc.) which can operate in parallel
within a single processor cycle, and can thus increase the
aggregate number of operations which can be completed per
cycle.

One architectural approach which has been developed, in
order to allow parallel operation of multiple execution units,
is the Long Instruction Word (LIW) architecture. In this
approach, instructions for each of a number of execution units
are concatenated into one “long instruction word” which can
be executed in a single processor cycle. Typically, in imple-
mentations of this approach, abit field within the long instruc-
tion is reserved for an instruction for each of the execution
units, regardless of whether a particular execution unit will be
active within any one processor cycle. This has the disadvan-
tageous effect that it creates excessively long instruction
words, which can contain a lot of redundant information for
execution units that are not active. The end result is a larger
and more costly design.

SUMMARY OF THE INVENTION

The present invention relates to an alternative implemen-
tation of an LIW processor.

According to a preferred embodiment of the present inven-
tion, there is provided a processor which comprises multiple
execution units. The multiple execution units of the processor
are divided into groups, and an input instruction word can
contain instructions for one execution unit in each of the
groups.

In a further preferred embodiment of the invention, the
processor is optimised for use in signal processing operations,
in that the multiple execution units of the processor are
divided into groups which do not place significant restrictions
on the desirable uses of the processor. That is, it has been
determined that, in signal processing applications, it is not
usually necessary for certain execution units to operate simul-
taneously.

These execution units can therefore be grouped together, in
such a way that only one of them can operate at a particular
time, without significantly impacting on the operation of the
device.

According to a further aspect of the present invention, there
is provided an array, comprising a plurality of interconnected

10

15

20

25

30

35

40

45

50

55

60

65

2

processors, wherein each of the processors comprises mul-
tiple execution units as defined above.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention, and to
show how it may be put into effect, reference will now be
made to the accompanying drawings, in which:

FIG. 1 is a block schematic diagram of a processor array
according to an aspect of the present invention;

FIG. 2 is a block schematic diagram of a processor within
the processor array of FIG. 1, according to another aspect of
the present invention;

FIG. 3 is an overview of the format of an instruction word
for use in the processor of FIG. 2;

FIG. 4 illustrates in more detail the format of a part of the
instruction word shown in FIG. 3;

FIG. 5 illustrates the operation of a second part of the
instruction word shown in FIG. 3;

FIG. 6 illustrates the operation of a third part of the instruc-
tion word shown in FIG. 3.

FIG. 7 illustrates operand values and actions.

FIG. 8 illustrates a branch destination instruction at a word
boundary.

DETAILED DESCRIPTION

FIG.11s ablock schematic diagram ofa processor array, as
generally described in W002/50624. The array is made up of
array elements 20, which are interconnected by buses and
switches.

The array architecture includes first bus pairs 30, shown
running horizontally in FIG. 1, each pair including a respec-
tive first bus 32 carrying data from left to right in FIG. 1 and
a respective second bus 36 carrying data from right to left.

The array architecture includes second bus pairs 40, shown
running vertically in FIG. 1, each pair including a respective
third bus 42 carrying data upwards in FIG. 1 and a respective
fourth bus 46 carrying data downwards.

InFIG.1, each diamond connection 50 represents a switch,
which connects an array element 20 to a respective bus 32, 36.
The array further includes a switch matrix 55 at each inter-
section of a first and second bus pair 30, 40. The data buses,
and the switches and switch matrices, therefore allow data to
be switched from one array element to another for processing,
as required.

In this embodiment of the invention, at least some of the
array elements 20 take the form of processors, as shown in
more detail in FIG. 2. In accordance with this illustrated
embodiment of the present invention, the processors 20 are
adapted to make them particularly suitable for use as array
elements, although the invention is also applicable to indi-
vidual processors.

The processor 20 includes a 64x64 bit instruction memory
60, which contains instructions loaded into the memory to
control the operation of the processor. In operation of the
device, instructions are fetched from the instruction memory
60, and passed to an instruction decoder 62, where they are
decoded to configure the datapaths and execution units in the
processor.

In this illustrated embodiment, the processor comprises six
execution units. The first available execution unit is a first
Arithmetic Logic Unit (ALU) 64, which can perform a num-
ber of arithmetic and logical operations.

The second available execution unit is a communications
unit 66, which is connected to the input communications bus
68 and the output communications bus 70, and is able to

US 9,104,426 B2

3

perform “put” and “get” operations to move data to and from
the external communications buses 68, 70, and is also able to
move data to and from the 15x16 bit data registers 84. The
registers 84 are connected to the execution units by means of
a data bus 85.

In this illustrated embodiment, the communications unit 66
is thereby optimised to support the processing performed in
the array, whereby data flows from one processor 20 to
another, with parts of the processing being performed at each
stage.

The third available execution unit is a combined Memory
Access Unit (MAU)/second ALU 72, which performs a vari-
ety of load and store operations over a bus 74 to a 64x32 bit
data memory 76, and also provides a subset of the ALU
operations performed by the first ALU 64.

The fourth available execution unit is a branch unit 78,
which performs a number of conditional and unconditional
branch operations.

The fifth available execution unit is a Multiplier Accumu-
lator (MAC) Unit 80, which performs a variety of multiply
and multiply accumulate operations with various bit widths.
In an alternative embodiment of the invention, this unit may
be replaced by a simpler Multiply unit.

In this illustrated embodiment of the invention, there is a
sixth available execution unit in the form of an Application
Specific Unit (ASU) 82. More specifically, the ASU 82 is
adapted to perform a number of highly specialised operations
for wireless signal processing applications, such as complex
spread and complex despread, in order to support CDMA
transmit and receive functionality. In an alternative embodi-
ment of the invention, this unit may be omitted.

As is conventional, in general each execution unit is able to
perform one operation in one clock cycle. However, The first
ALU 64 is also able to perform a shift operation on the first
operand of the basic arithmetic or logical operations. Thus, in
this special case, two instructions can effectively execute
simultaneously on that one execution unit.

Analysis of a wide range of signal processing applications
has now led to the conclusion that it is not necessary for all of
the execution units to be able to operate simultaneously. In
this illustrated embodiment of the invention, the execution
units are clustered into three groups, each controlled by a
separate instruction in a LIW instruction.

Specifically, in this illustrated embodiment, the first group
86 includes only the first Arithmetic Logic Unit (ALU) 64; the
second group 88 is made up of the communications unit 66,
and the combined Memory Access Unit (MAU)/second ALU
72; and the third group 90 is made up the branch unit 78, the
Multiplier Accumulator (MAC) Unit 80, and the Application
Specific Unit (ASU) 82.

According to this preferred embodiment of the invention,
the device is then controlled such that any one, any two, or all
three of the groups 86, 88, 90 can be active at any one time, but
such that no more than one of the execution units within a
group can be active at any one time. Further, the instruction
format is such that this can be achieved efficiently in each
case.

Specifically, along instruction word can include an instruc-
tion LIW#1 for the first group 86, an instruction LIW#2 for
the second group 88, and an instruction LIW#3 for the third
group 90.

FIG. 3 shows the basic structure of a long instruction word
instruction, which is also explained in more detail in FIGS. 4,
5 and 6.

Thus, the long instruction word first contains a short, 3 bit,
bit sequence, which indicates whether the first group 86 is

10

20

30

40

45

55

65

4

active in that processor cycle and, if so, indicates what class of
operation is to be performed, so that execution units and
datapaths can be configured.

As shown in FIG. 4, except in the case where the first three
bits of byte 0 are 000, the first group 86 is active in that
processor cycle and that three bit sequence indicates what
operation is to be performed by the first Arithmetic Logic Unit
(ALU) 64.

Thus, when the value of the first three bits is within the
range 001-100, the operation is an ALU operation with three
operands, for example adding two values to give a result, with
the three operands then being the register addresses of the two
values to be added plus the register address in which the result
is to be stored.

When the value of the first three bits is within the range
101-110, the operation is a load or store operation between
the data memory and a nominated register or register pait.

When the value of the first three bits is 111, the operation is
an ALU operation with two operands, one operand, or no
operands, for example nop.

In any of these cases, the fourth bit then indicates whether
an extension byte is to be used, as will be described in more
detail below. The remaining four bits of byte 0, and the eight
bits of byte 1, then indicate the operands or opcode values,
depending on the value of the first three bits of byte 0, as
shown in FIG. 4. More specifically, where FIG. 4 says that
four of these bits represent an operand, they define the
address, within the registers 84, from which the first ALU 64
should retrieve the respective operand on which it will per-
form the defined operation.

When the first three bits of byte 0 are not 000, and thus the
first group 86 is active in that processor cycle, the fourth bit
must be set to “1”, and the extension byte must be used, if
either the second group 88 or the third group 90 is active.

In the case where the first three bits of byte 0 are 000, the
first group 86 is not active in that processor cycle, and byte 0
of the long instruction word then contains further short bit
sequences, which indicate whether the second group 88 and
third group 90 are active and, if so, what class of operation is
to be performed.

Thus, there is a 3 bit sequence Lcode 2 relating to the
second group 88, as shown in FIG. 5, and a 2 bit sequence
Lcode 3 relating to the second group 90, as shown in FIG. 6.

If either or both of the second group 88 and third group 90
is active, then additional bytes LIW#2 108 provide required
information to allow the second group 88 to perform the
intended function, and additional bytes LIW#3 110 provide
required information to allow the third group 90 to perform
the intended function.

In the case where the first three bits of byte 0 are not 000,
and an LIW#1 instruction or “short” Memory Access opera-
tion is to be executed, the extension byte must be used if either
or both of the second group 88 and third group 90 is active. If
s0, the extension byte carries L.code2 and [.code3, and addi-
tional bytes LIW#2 108 and L.IW#3 110 contain the required
information to allow the relevant group to perform the
intended function.

The extension byte also carries a 2-bit extension opcode
“ex op”, which allows more possible instructions for ALU#0.
The extension byte also includes a 1 bit flag, S. If set, the flag
S indicates the presence of a shift operation on the AL U first
operand. In that case, an additional byte following the exten-
sion byte is used to define whether the shift is logical or
arithmetic, to the left or right, and how many bits are shifted
(4-bit value).

The instruction set architecture supports the use of short
constants (which, in this illustrated embodiment, are 4 bits

US 9,104,426 B2

5

long) and long constants (which, in this illustrated embodi-
ment, are 16 bits long). As shown in FIG. 4, operands are
generally 4 bits long, and one of these 4-bit operands nor-
mally refers to one of the registers 84, but it can alternatively
be used to indicate a 4-bit constant value. As illustrated in
FIG. 7, where it is required to use a longer constant value, the
operand value ‘15’ is used to direct the instruction decoder 62
to take the value in the 16-bit field 112, which in that case
appears at the end of the long instruction word instruction, as
a 16-bit constant value. No useful information is therefore
stored at the register address “15” (RI 5). Thus, writing to R15
is used to indicate that an operation result should be dis-
carded.

It can therefore be seen that the encoded instruction word is
organized on byte boundaries. It can further be seen from
FIGS. 3-6 that an individual LIW instruction can be between
1 byte (the special case where none of the groups is active, and
there are no LIW#1, no LIW#2 and no LIW#3 instructions)
and 9 bytes in length. The instruction decoder 62 can there-
fore support any combination of instruction lengths within a
single 64-bit instruction word and can tolerate LIW instruc-
tions which are contained in successive 64-bit instruction
words.

In one embodiment of the invention, the length of any
single LIW instruction cannot exceed 8 bytes. However, in
other embodiments of the invention, this maximum length
can be set to any desired value. This restriction results in a
small number of combinations of LIW#1, LIW#2 and LIW#3
instructions which cannot be supported because they exceed
this length. These illegal combinations are trapped by the
Instruction Decode block 62, resulting in the setting of an
Illegal Instruction flag. Preferably, a compiler and assembler
operating to support the processor architecture should also
intercept disallowed instruction combinations at compile
time.

There is one situation where alignment of LIW instructions
must be restricted further, and that is in the case of branch
destinations. The architecture relies on an instruction being
decoded every processor cycle and therefore it is necessary
that a branch destination is aligned at the beginning ofa 64-bit
instruction word. The instruction decoder 62 interprets an
all-0 byte instruction (equivalent to “no LIW#1, no LIW#2,
no LIW#3”) as a “new line” and will fetch the next 64-bit
instruction word. Thus the compiler and assembler can use
the “new line” instruction at the end of an instruction
sequence immediately prior to a branch destination, as illus-
trated in FIG. 8, in order to ensure 64-bit alignment of the
instruction at the branch destination.

The long instruction word format therefore has the prop-
erty that the length LIW,,, of the long instruction word is
independent of the total number of execution units. Rather, it
is determined by the maximum number of execution units
which can be active in a single processor cycle. In the illus-
trated embodiment, a maximum of three execution units out
of' the six available can be active in a single LIW instruction/
processor cycle, and the maximum length of a single LIW
instruction is limited to 64 bits.

Further, the length LIW,,,, of the long instruction word can
vary, from one instruction to the next, depending on the num-
ber of active execution units within a given cycle. Thus, in
many instruction cycles, it is likely that LIW, _ will be less
than 64 bits.

Also, multiple instructions can be packed into the 64 bit
wide instruction memory 60, usually without the need for
alignment to word boundaries, and the instructions can over-
run a 64-bit instruction word boundary into the following
instruction word.

inst

5

10

15

20

25

30

35

40

45

50

55

60

65

6

Taken together, these factors mean that the result is object
code which is compact and highly efficient in both high-
throughput signal processing applications with multiple par-
allel operations per cycle and lower-throughput, more com-
plex control operations.

This reduces hardware complexity significantly and, more
importantly, reduces the complexity of the compiler/assem-
bler required to support the architecture.

The invention claimed is:
1. A processor comprising:
a plurality of registers to store data;
an instruction decoder to decode a first instruction word
that is to include a first plurality of at least three instruc-
tions, wherein the first instruction word is part of an
instruction set architecture having instruction words
with a variable instruction length; and
at least three groups of execution units coupled with the
instruction decoder and the plurality of registers,

wherein each of the at least three groups of execution units
is to correspond to a different instruction of the at least
three instructions of the first instruction word,

wherein each instruction of the at least three instructions of

the first instruction word is only able to control an execu-
tion unit in the corresponding group of execution units,
and

wherein only one execution unit in each of the at least three

groups of execution units is to be controlled by the
different corresponding instructions of the at least three
instructions of the first instruction word.

2. The processor of claim 1, wherein each instruction is
capable of controlling any of the execution units in each
corresponding group of execution units.

3. The processor of claim 1, wherein the instruction words
of'the instruction set architecture have instruction lengths that
depend on a number of execution units to be controlled by the
instruction words but not on a total number of execution units.

4. The processor of claim 1, wherein the instruction
decoder is to decode a second instruction word that is to
include a second plurality of instructions, wherein the second
instruction word is shorter than the first instruction word, and
wherein the second plurality of instructions is less than the
first plurality of instructions.

5. The processor of claim 4, wherein the second instruction
word is able to control only one execution unit in less than all
of'the groups of the execution units, but in any of the groups
of the execution units.

6. The processor of claim 1, wherein the instruction
decoder is to decode a second instruction word that is to
control an execution unit in one of only any one, only any two,
and in all of the groups of execution units.

7. The processor of claim 1, wherein the instruction
decoder is to decode the first instruction word that is to have
afirst bit sequence, wherein a plurality of values of the first bit
sequence are each to provide an address of a register that is to
have an operand on which an operation of the first instruction
word is to be performed, and wherein a given value of the first
bit sequence is to direct the instruction decoder to take a value
in a field of the first instruction word which is different than
the first bit sequence.

8. The processor of claim 7, wherein the first bit sequence
comprises four bits.

9. The processor of claim 7, wherein the field has a greater
number of bits than the first bit sequence.

10. The processor of claim 1, wherein the instruction
decoder is to decode a second instruction word that is to
include a given bit sequence to indicate that the second

US 9,104,426 B2

7

instruction word has no instructions, and wherein the proces-
sor inresponse to the second instruction word is to fetch a next
instruction word.

11. The processor of claim 10, wherein the next instruction
word is to include a branch destination.

12. The processor of claim 1, wherein a group of execution
units includes execution units selected based on analysis of
operation of the processor while performing applications.

13. A processor comprising:

a plurality of registers to store data;

an instruction decoder to decode a first instruction word

that is to include a first plurality of instructions:

the first instruction word to have a first bit sequence;

aplurality of values of the first bit sequence each to provide

an address of a register to have an operand on which an
operation of the first instruction word is to be performed;
and

a given value of the first bit sequence to direct the instruc-

tion decoder to take a value in a field of the first instruc-
tion word that is different than the first bit sequence,
wherein the field has a greater number of bits than the
first bit sequence; and

a plurality of groups of execution units coupled with the

instruction decoder and the plurality of registers.

14. The processor of claim 13, wherein the first instruction
word is to have at least three instructions.

15. The processor of claim 13, wherein the first bit
sequence comprises four bits.

16. The processor of claim 13, wherein the first instruction
word is included in a set of instructions that include instruc-
tion words that have varying instruction lengths.

10

15

20

25

30

8

17. The processor of claim 13, wherein only one execution
unitin each of the groups of execution units is to be controlled
by a different corresponding instruction of the first instruction
word.

18. A processor comprising:

a plurality of registers to store data;

a first group of execution units;

a second group of execution units;

a third group of execution units;

an instruction decoder coupled with the first, second, and

third groups of execution units and the plurality of reg-
isters, the instruction decoder to decode instruction
words including,

a first instruction word having a first plurality of at least

three instructions, and

a second instruction word having a second plurality of

instructions, wherein the second plurality of instructions
is less than the first plurality of the at least three instruc-
tions,
wherein each ofthe first, second, and third groups of execu-
tion units is to correspond to a different instruction of the
at least three instructions of the first instruction word,

wherein only one execution unit in each of the first, second,
and third groups of execution units is to be controlled by
the different corresponding instruction of the at least
three instructions of the first instruction word,

wherein only one execution unit in less than all of the first,

second, and third groups of the execution units is to be
controlled by a different corresponding instruction of
the second instruction word, and

wherein the second instruction word is to have a shorter

instruction length than the first instruction word.

#* #* #* #* #*

